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It has recently been shown that the first passage time problem for a certain class 
of one-dimensional processes that includes shot noise can be formulated in 
terms of a set of integral equations. These are found by exact enumeration of all 
possible trajectories. We show that the equations can be found by more direct 
means for processes described by the evolution equation 2(t)=f(x)+n(t) ,  
where n(t) is time-localized shot noise. 
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1. I N T R O D U C T I O N  

The theory of first passage times for time-homogeneous Markov processes 
in the presence of absorbing states is well understood, although technical 
problems may remain in particular applications. (1"2~ The corresponding 
theory for non-Markovian processes is in a much more fragmented state 
because of the large number of possible models. One such class of non- 
Markovian models for which some progress has been possible is that in 
which the noise is dichotomous. This has been studied by a number of 
authors, the early analyses being valid for telegraph signal noise, (3-5) i.e., 
the time points at which the noise changes sign are described by a Markov 
process. Recently Masoliver et alJ 6) developed a formalism for calculating 
statistical properties of the first passage time (FPT) for a particular class of 
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one-dimensional processes driven by non-Markovian dichotomous noise. 
The methodology of that reference requires an exact enumeration of all 
possible events and is therefore somewhat complicated. More recently 
Weiss etal. (7) have shown that a complete enumeration of events is 
unnecessary and the integral equation derived in Ref. 6 can be found 
directly. This more direct approach allows one to extend the analysis to a 
larger class of multivalued noise models. 

A second class of non-Markovian processes for which some results on 
statistical properties of FPTs can be found is that of shot noise. (8> 
Masoliver has shown that one can use the technique of event enumeration 
to derive an integral equation for the mean first passage time out of the 
interval, I =  (0, L). In his analysis it is assumed that x(t) evolves deter- 
ministically in the absence of shot noise impulses. 

In the present paper we assume that x(t) is the solution to the one- 
dimensional dynamical equation 

2(t) = f ( x )  + n(t) (1) 

where n(t) is assumed to be the shot noise process 

n(t) = ~ ?i 6 ( t -  ti) (2) 
i=~ 

where the 7i and Az= t i - t ~ _  1, i =  1, 2 , . ,  are assumed to be independent, 
identically distributed random variables and 6(t) is a delta function. 
Equation (1) is to be solved subject to the initial condition x ( 0 ) - - x  0, our 
object being to calculate statistical properties of the F P T  to one of the 
boundaries of L We will show that the enumeration method used by 
Masoliver (8) can be replaced by a more ,direct method of solution. It will be 
shown that the expression for the survival probability can be written in 
terms of a function v(x, t), to be defined. This function, together with a 
second function that enters the problem in a natural way, is shown to be 
found as the solution to a coupled set of integral equations. The Laplace 
transforms of these functions satisfy a somewhat simpler set of equations, 
which is convenient for the calculation of moments of the FPT. In special 
cases these equations can be transformed into a single second-order 
differential equation together with appropriate boundary conditions, but in 
general one is left with the coupled integral equations, which are then to be 
analyzed numerically. 

2. A N A L Y S I S  

The reason that one can give a relatively simple analysis of the F P T  
problem for dynamical systems with shot noise of the form given in Eq. (2) 
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is that the impulses composing the shot noise are assumed to occur instan- 
taneously. Thus, it is possible to decompose the resulting dynamical 
evolution into intervals of impulse-free motion and instantaneous jumps 
due to the impulses. It is considerably more complicated to deal with the 
effects of impulses that are nonlocal in time. This more general case 
appears to pose a mathematical problem of great difficulty that we have 
been unable to solve.. In our analysis of the simpler case the instants at 
which impulses occur, the {ti}, i =  1, 2 ..... will be regarded as constituting a 
regenerative process in the sense of Smith, (9) which suggests the form of the 
analysis that follows. 

Let us first define the functions needed to describe our problem as well 
as the mathematical assumptions used in the solution. 

1. The probability density of the impulse amplitudes T; will be 
denoted by h(7). In the most general analysis no restrictions need be placed 
on the sign or magnitude of the 7~ for the following analysis. 

2. The common probability density for the inter-impulse times, the 
A's, will be denoted by O(A), so that the probability that t s -  ti_ 1 > z~ is 

~(~) = 4,(u) au (3)  

3. The impulse-free evolution will be described by a known function 
x ( t ) =  X(tlXo), where x0 =x(0) .  This function is the solution to k = f ( x )  
and will be assumed to be a monotonic in t, that is, f(x) will be assumed to 
have the same sign for all x in I. For  the sake of definiteness f(x) will be 
chosen to be negative, so that 2 < 0 throughout the interval. This implies 
that any exit from I that occurs between two successive impulses will 
always occur at the lower boundary, x = 0. 

4. It will be convenient to define a travel time between two points a 
and b, both in I. Since the dynamical system is autonomous, i.e., the 
function f(x) does not contain the time except implicitly through x, the 
travel time between points a and b can be calculated as 

/ , a  

t(a,b)=j du/[f(u)t for a>b 
b 

t(a,b)=O for a < b  
(4) 

Since, as we have noted, the times at which impulses occur constitute a 
regenerative process, a calculation of properties of the F P T  requires only 
that we know the state of the system at the impulse times ti. Two functions 
are required to specify these properties. These are defined at the jump 
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points only and will be denoted by u(x, t lxo) and v(x, t [ Xo). The two 
functions are defined by 

u(x, t [ xo) dx= Pr{x < lim x ( t -  At) < x + dx l x(O)= xo} 
~,-+o (5) 

v(x, t [ Xo) dx -- Pr{x < lim x(t + At) < x + dx [ x(0) = Xo} 
A t ~ O  

The two functions differ because of the impulse at time t, but they are not 
independent, since v(x, t [ Xo) can be expressed in terms of u(x, t[ Xo) and 
h(v), as will be seen shortly. In addition to the functions u and v, it is 
necessary for us to define an initial function u~(x, tx I Xo) analogous to but 
generally different from u(x, t [Xo), since all of the t i have a preceding 
impulse except t~. 

Let us first express the probability S(t [ Xo) that x(t) is still in I at time 
t, given the initial position Xo, in terms of the functions u(x, t lXo), 
ul(x, t [ x0), and v(x, t[ Xo) defined earlier. In our final step we derive the 
equations satisfied by these functions. The expression for S(t[ Xo) is 

fo S(tlXo)-- gs(t) dx 6 ( x - X ( t l X o ) )  

f: ;: Yo + dx dy v(y, ziXo) 6 [ x - X ( t - z [  y) ]  YJ( t -z )  d~ (6) 

The first term is the contribution from the time before the first impulse, and 
the second the contribution from times after the occurrence of at least one 
impulse. As a final step we need to specify the set of integral equations 
satisfied by the functions u, x, and v. These are found as the solution to 

;2f: u(x , t )=ul (x , t )+  dz dyv(y, Q 6 [ x - X ( t - r [ y ) ] t ~ ( t - Q  

(7) 
v(x, t ) =  d y u ( y , z ) h ( x - y ) ,  O < x < L  

in which we have suppressed the argument Xo which should appear in all of 
the u's and v's. One can also combine the pair of integral equations into a 
single one involving a double integral. The function u~(x, t) can be 
expressed in terms of functions defined earlier as 

ul(x, t l X o ) = 6 [ x -  X(t l Xo)]O(t) (8) 

Equations (6)-(8) give a complete formulation of the F P T  problem, since 
the FPT moments can be expressed as 

(t.(Xo))=n Tn-Is(TIXo) N~ (9) 
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In the most general cases Eqs. (6)-(8) can be used as the basis of a 
numerical solution of the FPT problem. It will prove convenient in what 
follows to use the Laplace-transformed version of this set of equations, 
since the FPT moments are simply expressed in terms of these. If we denote 
the Laplace transform of a function by the same function with a caret, e.g., 
{S(t[Xo)} = S(s [ x0), then Eq. (9) is seen to be equivalent to 

( t . ( X o ) ) = ( - 1 ) ~ n d ~ - l S / d s "  I[~_ o (lO) 

The Laplace transforms of the components of Eq. (7) are 

~I(X,,~)~-I~I(X,S)--" ~ dy6(y,s)~(t(x, y))e -s'(~'y) 

~(x, s) = f :  dy fi( y, s) h(x - y) 

(11) 

One can find an integral equation for the mean FPT by taking the 
Laplace transform of Eq. (6) and making use of Eq. (10). Rather than 
doing this in complete generality, let us restrict ourselves to the case of an 
exponential waiting time density 

~(t) = 2e ;" (12) 

and define v( y ) ---15( y, 0). We then find that ( t l(xo)) is the solution to 

fo~176 (t,(Xo)) = - f ( x )  dx dy e-;"(x'y)v(y) (13) 

where t(x, y) is the travel time defined in Eq. (4). Let us specialize the 
problem even more by assuming that the impulses can only be positive and 
are described by a negative exponential density, 

h(x) = ye -,tx, x > 0 
(14) 

=0, x<O 

Then the system of coupled integral equations in Eq. (11) can be reduced 
to a second-order inhomogeneous differential equation for the function 
v(x) needed to evaluate the expression for (q(Xo))  in Eq. (13). The result 
is 

d2v(x) I , f ' ( x ) + 2 ] d v  7f'(x) v ( x )= 2y6 (X _X o  ) (15) 
dx - - - r - +  f(x) 
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which is to be solved subject to the boundary conditions 

v(0 )  = 0, a v / d x l x  - L  = - ~ v ( L )  (16) 

There are only a few cases in which these equations can be solved in 
closed form. One of these is for the case of uniform motion x ( t ) =  -- t ,  in 
the absence of impulses. If we set fl = ~ = 1 for simplicity, then we find that 
the function v(x)  satisfying Eqs. (15) and (16) is where O(x) is the 
Heaviside step function. In this case one finds ( t l ( X o ) )  to be 

( t l ( x o ) )  = x2 (l+L+L2/2"~ 
- ~ +  i 2 ~ Z  - ix0  (18) 

It is also possible, using present methods, to analyze the case in which 
f ( x )  = 0, so that in the absence of impulses the system remains stationary. 
However, generalization of the theory to analyze F P T  properties of the 
nonautonomous  dynamical system whose evolution is described by 

2 = f ( x ,  t) + n(t)  (19) 

seems quite difficult. 
Finally, we comment  that an extension of our formalism allows one to 

treat the case in which the impulse-free motion is itself a random process. 
This generalization is under investigation. 
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